Shift-Enabled Graphs: Graphs Where Shift-Invariant Filters are Representable as Polynomials of Shift Operations
نویسندگان
چکیده
منابع مشابه
Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملTowards Constructing Ramanujan Graphs Using Shift Lifts
In a breakthrough work, Marcus et al. [15] recently showed that every d-regular bipartite Ramanujan graph has a 2-lift that is also d-regular bipartite Ramanujan. As a consequence, a straightforward iterative brute-force search algorithm leads to the construction of a d-regular bipartite Ramanujan graph on N vertices in time 2. Shift k-lifts studied in [1] lead to a natural approach for constru...
متن کاملInfinite Paths in Random Shift Graphs
We determine the probability tresholds for the existence of infinite paths in random shift graphs.
متن کاملConstructing Ramanujan Graphs Using Shift Lifts
In a breakthrough work, Marcus et al. [15] recently showed that every d-regular bipartite Ramanujan graph has a 2-lift that is also d-regular bipartite Ramanujan. As a consequence, a straightforward iterative brute-force search algorithm leads to the construction of a d-regular bipartite Ramanujan graph on N vertices in time 2. Shift k-lifts studied in [1] lead to a natural approach for constru...
متن کاملStrongly adjacency-transitive graphs and uniquely shift-transitive graphs
An automorphism of a 7nite simple graph is an adjacency automorphism if for every vertex x∈V ( ), either x = x or x is adjacent to x in . An adjacency automorphism 7xing no vertices is a shift. A connected graph is strongly adjacency-transitive (respectively, uniquely shift-transitive) if there is, for every pair of adjacent vertices x; y∈V ( ), an adjacency automorphism (respectively, a unique...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2018
ISSN: 1070-9908,1558-2361
DOI: 10.1109/lsp.2018.2849685